

Calculation of thermal properties:

Product: POROTHERM HP 150 TB

Destination country: India

Methode: numerical simulation

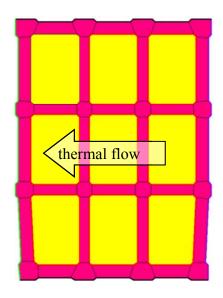
Software: THERM Finite Element Simulator Version 6.3

Lawrence Berkeley National Laboratory

UNIVERSITY of CALIFORNIA, Berkeley 2003

Calculator: Dipl.Ing. Michael Kogler

Calculation is performed according the following standards:


ISO 6946:1996, Building components and building elements — Thermal resistance and thermal transmittance — Calculation method (ISO 6946:1996)

ISO 7345, Thermal insulation — Physical quantities and definitions (ISO 7345:1987)

ISO 10456, Building materials and products—Products for determining declared and design values (ISO 10456:1999)

EN 1745 : Masonry and masonry products — Methods for determining design thermal values

1. Product geometry:

Dimensions:

Length: 400 mm Thickness: 150 mm Height: 200 mm

Voids ratio: 58,4 %

All voids filled with mineral wool

2. material data:

The thermal properties are defined for the dry state, at a temperature of 10° C; propability: p=50% acc. EN1745

	density	ceramic thermal conductivity: $\lambda_{I0,dry,material}$
	[kg/m³]	[W/mK]
Ceramic body	1920 <u>+</u> 20	$0,47 \pm 0,05$
Mineral wool	115 <u>+</u> 10	$0,037 \pm 0,02$

3. boundary conditions:

3.1. internal and external surface resistance in m²K/W according to EN ISO 6946:

$$R_{si} = 0.13 \text{ m}^2 \text{K/W}$$

$$R_{se} = 0.04 \text{ m}^2 \text{K/W}$$

3.2. internal and external temperatures in °C:

$$T_i = 24 \, ^{\circ}\text{C}$$

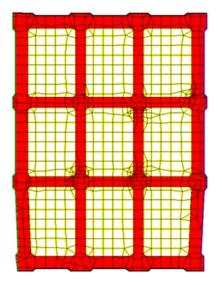
$$T_e = 45 \, ^{\circ}\text{C}$$

average temperature in product = 34,5 $^{\circ}C$

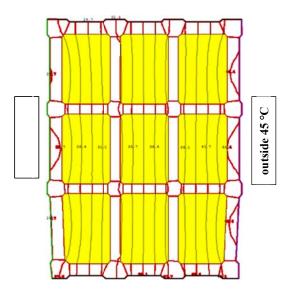
4. results calculated:

U-value of the product [W/m²K]		
min *)	max *)	average
0,687	0,713	0,700

^{*)} The differences between min. and max. U-values are caused by the numerical stability of the simulation and the accuracy of equation solving algorithms.

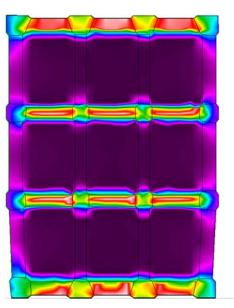

U-values for ceramic densities not corresponding with the calculated values may be linearly interpolated.

Vienna, 09.01.2012 Dipl.Ing. M. Kogler


Graphs of results see appendix 1

Appendix 1:

Finite element mesh:



Picture of isotherms:

Thermal flux through the product:

